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1 Introduction

The emergence of the cryptocurrency market over the past decade has been accompanied

by remarkable growth. Market capitalization has increased from $11 billion US dollars

(USD) in 2014 to a peak of $2.9 trillion USD in 2021. Similarly, daily trading volume has

risen from $40 million USD in 2014 to a peak of $308 billion USD in 2021. Unlike tradi-

tional foreign exchange markets, where trading volume is concentrated among a few major

dealers (Menkhoff et al., 2016), cryptocurrency markets consist of independently owned,

non-integrated exchanges that operate in parallel across countries and multiple currencies

(Makarov and Schoar, 2020). Furthermore, cryptocurrency markets are relatively less liquid

and face more pervasive asymmetric information compared to traditional markets (Bianchi,

Babiak and Dickerson, 2022). These unique features make cryptocurrency markets a novel

setting for studying the role of order flow in the price formation process.1

In this context, this paper contributes to the emerging cryptocurrency literature by assessing

the information content of order flow for explaining and predicting cryptocurrency returns.

Specifically, we address four related questions. First, can order flow explain the cross-section

of cryptocurrency returns? Second, does order flow convey predictive information for the

cross-section of cryptocurrency returns? Third, do machine learning techniques (linear and

non-linear) improve the out-of-sample predictive power of order flow relative to standard

predictive approaches? Finally, fourth, can the predictive power of order flow be explained

by economic restrictions such as limits to arbitrage? Addressing these questions is relevant

to the study of market microstructure and paves the way for a deeper investigation into

1 According to coinmarketcap.com, the market capitalization of the cryptocurrency market on January

1, 2014 was $10.8 billion USD and subsequently peaked on November 8, 2021 at $2.9 trillion USD.

Daily volume was $40.2 million USD on January 1, 2014 and peaked on April 16, 2021 at $308 billion

USD. This trading volume was spread across more than 700 exchanges operating in various countries

and transacting in over 50 fiat currencies.
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the economic mechanisms driving order flow and price discovery in cryptocurrency markets.

Although for traditional financial markets these questions have been addressed by a long

line of research, for cryptocurrencies they remain open. In this paper, we bridge this gap in

the literature by focusing on the information conveyed by order flow in the cryptocurrency

market.2

Order flow is a measure of the net demand for a particular cryptocurrency defined as the

value of buyer-initiated transactions minus the value of seller-initiated transactions. In

general, there are three economic explanations on the extent to which order flow may be

related to cryptocurrency returns. First, it is possible that order flow is in fact unrelated to

cryptocurrency returns. In this case, it is economic fundamentals, not order flow, that may

explain and predict cryptocurrency returns. We refer to this view as the “no-predictability

view” and it is essentially the null hypothesis tested in our empirical analysis.

Second, it is possible that order flow has a transitory effect on cryptocurrency returns. In

this case, order flow has a temporary but not a permanent effect. The market microstructure

literature associates transitory effects with changes in liquidity, price pressure and temporary

preference shocks (see, e.g., Froot and Ramadorai, 2005 and Menkhoff et al., 2016). We refer

to this view as the “transitory view.”

Finally, third, it is possible that order flow has a permanent effect on cryptocurrency re-

turns. The market microstructure literature associates permanent effects with asymmetric

information among market participants so that trades convey information with a persistent

effect on security prices (see, e.g., Glosten and Milgrom, 1985, Kyle, 1985, and Hasbrouck,

2 For the theory and empirical evidence on the effect of order flow on fiat exchange rates, see among

others, Evans and Lyons (2002, 2005), Berger et al. (2008), Evans (2010), Rime, Sarno and Sojli (2010),

Evans and Rime (2012) and Menkhoff et al. (2016). For US treasury markets see Brandt and Kavajecz

(2004), for the S&P 500 futures market see Deuskar and Johnson (2011), and for NYSE stocks see

Chordia, Roll and Subrahmanyam (2002), Goyenko, Holden and Trzcinka (2009) and Hendershott and

Menkveld (2014).
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1988, 1991). According to this view, if trades convey information about future economic

fundamentals that is not currently known by all market participants, then order flow acts

as the key vehicle that impounds this information into cryptocurrency returns through the

process of price discovery (see, e.g., Evans and Lyons, 2002, 2005 and Menkhoff et al., 2016).

We refer to this view as the “permanent view.”

Our empirical analysis employs daily data from a cross-section of 82 cryptocurrencies for the

sample period of January 1, 2018 to June 30, 2022. We use a rich dataset of order flows

denominated in 11 major currencies, including the G10 currencies plus South Korea, which

is a prominent centre for cryptocurrency trading. We then form a measure of world order

flow by aggregating the 11 international order flows. Accordingly, our analysis assesses the

information content of world order flow and disaggregated international order flows, including

US order flow. In what follows, we discuss our empirical approach and main findings step

by step.

We begin by estimating panel regressions to assess whether order flow can explain and predict

cryptocurrency returns in sample. The panel regressions condition on combinations of world

order flow and the 11 international order flows together with a set of coin-specific control

variables and economic fundamentals. We estimate contemporaneous and predictive panel

regressions at the daily and weekly frequency.

With respect to the in-sample evidence, our main finding is that world order flow has signif-

icant explanatory and predictive power for the cross-section of cryptocurrency returns. The

contemporaneous relation of world order flow and cryptocurrency returns is positive and

highly significant. World order flow together with control variables can explain about 11%

of daily returns and 20% of weekly returns.

For predictive regressions, it is crucial to separate two opposing components of order flow:

a transitory component that reverses in the short term and a permanent component that
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persists over the long term. Following Bianchi, Babiak and Dickerson (2022), we use lagged

returns as a proxy for short-term reversal. In other words, the predictive regressions condition

on lagged order flow, while controlling for lagged returns. We find that the portion of lagged

order flow that is uncorrelated with lagged returns has a positive and significant predictive

relation with future returns. The positive coefficient of world order flow for both daily and

weekly returns provides empirical support for the permanent view.

In considering all international order flows, world order flow consistently exhibits the highest

and most significant coefficient compared to all international order flows. In contempora-

neous regressions, the US and South Korean order flows are also significant. In predictive

regressions, however, the significance of US and South Korean order flows disappears in the

presence of world order flow. Overall, these findings indicate that world order flow is a more

powerful and significant predictor than any of the individual international order flows in the

context of in-sample panel regressions.

Next, we assess the out-of-sample predictive ability of order flow for daily cryptocurrency

returns using machine learning (ML) techniques (see, e.g., Gu, Kelly and Xiu, 2020, Cakici et

al., 2024, Fieberg et al., 2024 and Filippou, Rapach and Thimsen, 2024). These methods are

ideally suited for out-of-sample forecasting because they emphasize techniques for variable

selection and dimension reduction, which can accommodate a large set of predictors as well

as a richer specification of functional forms. Therefore, ML forecasting allows us to condition

on the 11 international order flows and additional economic fundamentals for prediction of

the one-day ahead cryptocurrency returns. We estimate a set of linear and non-linear ML

models, which include the following specifications: ridge regression (RR), lasso (LAS), elastic

net (EN), principal component regression (PCR), random forest (RF), stochastic gradient

boosted regression trees (SGB), and neural networks with 1-4 hidden layers (NN1-NN4).

In addition, we compute forecast combinations across the linear models (L-Mean), and the
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non-linear models (NL-Mean).3

In terms of the out-of-sample statistical analysis, we find that non-linear ML forecasts which

condition on all order flows consistently outperform: (1) linear models that condition on all

order flows, (2) linear and non-linear models that condition on economic fundamentals, and

(3) the zero-forecast benchmark. The best performer is the SGB model that conditions on all

order flows with an out-of-sample R2 of 0.66%. In short, non-linear ML models conditioning

on order flow have significant out-of-sample predictive ability for cryptocurrency returns.

In addition to the statistical analysis, we also assess the out-of-sample economic value of

conditioning on order flow using portfolio sorts. Our approach is based on generating cryp-

tocurrency portfolios sorted on lagged values of either world order flow or the ML return

forecast of models conditioning on all international order flows. The ML approach enables us

to exploit the predictive information of all international order flows. Specifically, on each day,

we allocate the 82 coins into quintile portfolios and assess the one-day ahead performance of

the five quintile portfolios as well as the long-short (top-minus-bottom) portfolio.

In assessing portfolio performance, we first demonstrate that portfolios sorted on world

order flow exhibit strong performance at the weekly frequency. For example, the long-short

mean return spread when conditioning on world order flow is equal to 1.61% per week, it is

significant (t-stat=2.13) and exhibits an annualized Sharpe ratio of 1.68. Furthermore, the

long-short portfolio based on world order flow delivers a weekly alpha of 1.44% (t-stat=2.02)

with respect to the cryptocurrency three-factor model (Liu, Tsyvinski and Wu, 2022). For

daily portfolio sorts, we first orthogonalize lagged world order flow with respect to lagged

returns to remove the short-term reversal component. The long-short portfolio based on

orthogonalized world order flow delivers an alpha of 0.30% per day (t-stat=2.07) and an

3 Although most of our analysis is performed for both daily and weekly returns, the out-of-sample ML

forecasting is only performed for daily returns. Due to the short sample period, which is specific to the

cryptocurrency market, we do not have enough data to perform weekly ML forecasting.
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annualized Sharpe ratio of 1.34.

Importantly, portfolio performance improves substantially when the portfolio sorts are based

on machine learning models that generate forecasts which condition on all order flows. Al-

though all ML models perform well, the non-linear models conditioning on order flow per-

form the best. For example, the best model (SGB) delivers a daily long-short alpha of 0.79%

(t-stat=5.67) and an annualized Sharpe ratio of 3.63. Moreover, non-linear ML models con-

ditioning on order flow outperform all ML models conditioning on economic fundamentals.

Furthermore, non-linear ML models conditioning on order flow outperform leading ML-based

benchmarks in the literature for forecasting cryptocurrency returns. For example, the NL-

Mean model in Filippou, Rapach and Thimsen (2024), which conditions on 54 characteristics

but excludes order flow, generates a Sharpe ratio of 2.57, while the same model conditioning

on order flow in this paper achieves a Sharpe ratio of 3.45. Taken together, these findings in-

dicate that there is significant additional economic value in conditioning on all international

order flows in the context of out-of-sample machine learning forecasts.

Motivated by Avramov, Cheng and Metzker (2023), we conduct an analysis on the profitabil-

ity of our models in the presence of economic restrictions such as short-selling constraints,

transaction costs and limits-to-arbitrage. To be more specific, in the cryptocurrency market,

it may be difficult or even impossible to short certain coins. Therefore, to generate a real-

istic trading strategy that avoids shorting, we may focus on the long portfolio rather than

the long-short portfolio spread. In light of this, we show that compared to the long-short

portfolios, the long portfolios exhibit a similar risk-adjusted return, lower Sharpe ratio, lower

turnover and hence a higher break-even transaction cost. For example, the long portfolio

of the NL-Mean combination exhibits a daily alpha of 0.81% (t-stat=2.99), an annualized

Sharpe ratio of 1.88 and a break-even transaction cost of 1.02% per day. In contrast, the

same model for the long-short portfolio delivers an alpha of 0.76% (t-stat=5.57), an annual-

ized Sharpe ratio of 3.52 and a break-even transaction cost of 0.48% per day. We conclude,
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therefore, that ML models that condition on order flow generate high economic value for

long-only investors who pursue a realistic trading strategy investing in cryptocurrencies.

Finally, we study whether the profitability of ML models conditioning on order flow can be

explained by limits to arbitrage. To test this, we create an arbitrage cost index based on

multiple indicators known to capture limits to arbitrage. We find that orthogonalized order

flow and non-linear ML models conditioning on order flow produce significant economic

value for coins with low arbitrage costs. In contrast, models conditioning on economic

fundamentals perform well only for coins with higher arbitrage costs, indicating that their

economic value can be explained by limits to arbitrage. Overall, the inability of limits

to arbitrage to explain the positive predictive ability of order flow further supports the

permanent view of the effect of order flow on cryptocurrency returns.

In summary, our analysis provides compelling empirical evidence to show that order flow has

strong and economically valuable out-of-sample predictive power for cryptocurrency returns.

Our findings indicate that order flow has a permanent effect for cryptocurrency returns

since this effect is consistently positive and stronger for weekly compared to daily returns.

Non-linear ML models conditioning on order flow outperform ML models conditioning on

economic fundamentals as well as leading ML benchmarks that do not include order flow.

Forecast combinations of non-linear ML models also exhibit strong performance. Finally,

our empirical findings are robust to economic restrictions such as short-selling constraints

and high transaction costs that characterize the cryptocurrency market. In short, order flow

matters for explaining and predicting cryptocurrency returns.

Our empirical analysis is related to the study of Makarov and Schoar (2020), who examine the

relation between bitcoin returns and order flow. However, the focus of Makarov and Schoar

(2020) is on assessing arbitrage opportunities across cryptocurrency exchanges. Therefore,

it substantially differs from our study since it only focuses on one coin and the analysis is

exclusively in-sample. Our portfolio sort analysis is related to Bianchi, Babiak and Dickerson
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(2022), who study cryptocurrency portfolio sorts on lagged returns and trading volume shocks

(denominated in US dollars), which differ from order flow. Our approach is distinct from

the extant literature as indicated by the use of a large cross-section of coins, a large cross-

section of order flows denominated in different currencies, the out-of-sample focus of assessing

predictability, the use of machine learning methods and the economic evaluation based on

portfolio sorts.

The remainder of the paper is organized as follows. In the next section, we describe the

cryptocurrency data and define order flow. In Section 3, we describe the in-sample panel

regression framework for explaining and predicting cryptocurrency returns. The framework

for out-of-sample prediction based on machine learning models is examined in Section 4. In

Section 5, we assess the economic value of order flow based on portfolio sorts and, in Section

6, we discuss the effect of economic restrictions. Finally, we conclude in Section 7. An Online

Appendix provides further details on the machine learning models and additional results.

2 Data

2.1 Cryptocurrency Returns

Our empirical analysis employs data from a cross-section of 82 cryptocurrencies for the

sample period of January 1, 2018 to June 30, 2022. For each cryptocurrency (crypto or

coin), we collect daily US dollar (USD) prices from coinmarketcap.com (henceforth CMC)

at 00:00am GMT time. The CMC data aggregates prices from over 700 exchanges and is a

reliable source of data that is used extensively in the cryptocurrency literature (for a detailed

description of the CMC data, see, e.g., Liu and Tsyvinski, 2021 and Liu, Tsyvinski and Wu,

2022). We exclude weekends and US holidays from the daily sample.
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The CMC database contains data on thousands of coins, though most have low market

capitalizations and/or limited historical data. To obtain the final cross-section of 82 coins,

we impose three criteria to ensure the liquidity of our crypto sample. First, we require that

coins must have a market capitalization of greater than 1 million USD on the last day of

the sample period. Second, coins must be continuously traded with a non-zero price and

non-zero volume in each time period of our sample. Finally, third, we exclude all stable coins

from the cross-section. As a result, we are left with a balanced panel of 82 coins.4

We use daily prices to compute returns:

ri,t =
Pi,t

Pi,t−1

− 1, (1)

where Pi,t is the price of coin i at time t. Weekly crypto returns are defined over the interval

beginning on Saturday at 00:00am GMT time and ending the following Friday at 11:59pm

GMT for a total of seven days including weekends.

2.2 Order Flow

Our primary variable of interest is order flow, which is defined as the log difference between

buyer-initiated and seller-initiated transaction volume denominated in a particular currency

over a period of time. We compute order flow using data on signed volume (buy-volume and

sell-volume) obtained from cryptocompare.com (henceforth CC). CC is a reliable source for

cryptocurrency volume data (see, e.g., Bianchi, Babiak and Dickerson, 2022). CC aggregates

4 We set January 2018 as the beginning of the sample to allow for a reasonable number of observations

across time, while maintaining a reasonably large cross-section of coins. Starting earlier than 2018

severely limits the breadth of the balanced cross-section. Notably, the number of coins in our sample

is similar to other studies using ML to predict crypto returns. For example, Filippou, Rapach and

Thimsen (2024) include 41 coins, while the number of coins in Cakici et al. (2024) dynamically ranges

from approximately 30 to 300.
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information from over 300 exchanges and provides data on signed volume that is not available

on CMC. Throughout our analysis, we use crypto data from CMC except for signed volume

(i.e., order flow) that is only available from CC.

A critical advantage of the CC data is that they provide signed volume data denominated

in several currencies. In our analysis, we compute the order flow denominated in each of

the G10 currencies plus South Korea. We add South Korea to the sample because it is a

prominent centre for trading cryptocurrencies outside of the G10. We designate this group

as the G11 currencies, which include the following: US dollar (USD), Euro (EUR), British

pound (GBP), Japanese yen (JPY), Swiss frank (CHF), Canadian dollar (CAD), Australian

dollar (AUD), New Zealand dollar (NZD), Norwegian krone (NOK), Swedish krona (SEK)

and the Korean won (KRW).

We compute a measure of order flow that is comparable across cryptocurrencies. Following

Menkhoff et al. (2016), we standardize each series as follows:

OFi,t =
ofi,t

σ(ofi,t−29:t)
, (2)

where OFi,t denotes the standardized order flow of coin i at time t, ofi,t is the original order

flow, and σ(ofi,t−29:t) is the order flow volatility over the last 30 days.

In addition to the 11 international order flows, we also define an aggregate measure that

we term world order flow (OFW ). World order flow is computed by aggregating all 11

buy-volumes and all 11 sell-volumes, taking the log difference, and performing the same

standardization as applied to the disaggregated order flows.

To assess the contribution of each cryptocurrency to world order flow, we conduct a variance

decomposition as follows:

V CW
i =

β2
i V ar(OFi)∑11

i=1 β
2
i V ar(OFi)

, (3)
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where V CW
i is the variance contribution of coin i to world order flow, βi is the estimated

coefficient of each order flow when regressing world order flow on its 11 components, and

V ar(OFi) is the variance of each order flow.

The variance decomposition results are reported in Table 1. As expected, for daily data,

the US order flow has the highest variance contribution at 39%. The second contribution

is from South Korea at 24%. This motivates our decision to add South Korea to the G10

order flows. The euro is third at 10% followed by the British pound at about 6%. Overall,

world order flow is dominated by few countries since the top two contribute 63% to the total

variance, whereas the top three contribute 73%. The weekly V Cs are similar to the daily

V Cs but now the top three order flows contribute 81% to world order flow.

2.3 Control Variables

We use a combination of coin-specific variables and economic fundamentals as controls in

the empirical analysis. The coin-specific variables include market capitalization (henceforth

market cap), total volume and volatility. Total volume is the sum of a coin’s 24-hour trading

volume across all exchanges. Volume and market cap are expressed in logs. Volatility is

defined as the log difference between a coin’s high price and low price on a given day. As

mentioned earlier, all coin-specific data other than order flow are obtained from CMC.

The economic fundamentals used in our analysis include the following. The short rate is

defined as the 3-month US T-bill rate. The term spread is defined as the difference between

the 10-year and 3-month US treasury rates. The default spread is defined as the difference

between the BAA- and AAA-rated corporate bond yields. All interest rate data are obtained

from the Federal Reserve Bank of St. Louis. The TED spread is defined as the difference

between the 3-month T-Bill rate and the 3-month LIBOR rate, and is obtained from the

LSEG Eikon database. The S&P 500 index returns (including dividends) are from the
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CRSP database. The MSCI global index returns are taken from msci.com. The VIX index

is obtained from CBOE.com.

2.4 Summary Statistics

In Tables A2 and A3 of the Online Appendix, we report summary statistics for all coin-

specific variables: returns, US and world order flow, market cap, volume and volatility. The

tables report results for all 82 coins as well as for the top 10 coins by market cap. In brief,

our main findings are as follows: (1) daily cryptocurrency returns are extremely volatile

with high positive skewness and very high kurtosis; (2) daily standardized order flow is well

behaved relative to returns since it exhibits low skewness and moderate kurtosis; (3) the coins

exhibit higher volatility, skewness and kurtosis in the time-series than the cross-section; and

(4) the average full-sample cryptocurrency return is equal to 0.21% per day or 52.9% per

year.

3 In-Sample Analysis

Our empirical approach is based on panel regressions for in-sample analysis and machine

learning techniques for out-of-sample analysis. This section presents the in-sample panel

regression results on the effect of order flow in explaining and predicting cryptocurrency

returns.
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3.1 Panel Regressions with World Order Flow

3.1.1 Contemporaneous Regressions

Can world order flow explain cryptocurrency returns? We address this question by estimat-

ing panel regressions that condition on contemporaneous world order flow and the control

variables. The panel regressions are estimated using the full sample ranging from February

14, 2018 to June 30, 2022, and include coin fixed effects. The results for both daily and

weekly data are reported in Table 2.5

Our main empirical finding is that world order flow has a positive contemporaneous relation

to returns, which is highly significant in all cases. Therefore, world order flow does explain

cryptocurrency returns. For example, in the presence of control variables, a one standard

deviation increase in world order flow is associated with a 2.2% increase in returns at the daily

frequency and a 4.0% increase at the weekly frequency. These results are highly significant

since the Newey and West (1987) t-statistic is equal to 37.62 for daily regressions and 16.97

for weekly regressions. Our results align with Makarov and Schoar (2020), who find a positive

contemporaneous relation between order flow and Bitcoin returns in daily regressions. We

show that this positive relation holds across a broad cross-section of cryptocurrencies and

demonstrate that it also persists in weekly regressions.

It is interesting to note that the weekly coefficient is larger than the daily coefficient and

this is also true for the R̄2. Specifically, the R̄2 is equal to 11.0% for daily regressions and

19.9% for weekly regressions. A possible explanation for the stronger weekly results is that

order flow at the daily horizon may include uninformed traders (also referred to as liquidity

or noise traders). Since the trades of uninformed traders are driven primarily by liquidity

preferences than information, the effect of these traders on the price tends to be transitory.

5 In the Online Appendix, we also report detailed results for US order flow.
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Aggregating order flow over one week mitigates the effect of market microstructure noise.

Consequently, order flow may explain a greater variation of price movements at the weekly

than the daily horizon.6

In addition to order flow, the control variables are also highly significant. For daily re-

gressions, all control variables but the market cap are significant. For weekly regressions, all

control variables are significant with no exceptions. In conclusion, world order flow has strong

and highly significant explanatory power for the cross-section of cryptocurrency returns in

the presence of crypto-specific control variables and standard economic fundamentals.

3.1.2 Predictive Regressions

Can world order flow predict cryptocurrency returns? We address this question by esti-

mating the same panel regressions as previously but with lagged values for all independent

variables. Specifically, we condition on the same control variables plus lagged cryptocurrency

returns. Short-term returns exhibit a negative autocorrelation due to transitory effects such

as price pressure and other short-term liquidity effects, resulting in reversal, i.e., a negative

relation between lagged and future returns. Table 2 shows that lagged order flow is positively

contemporaneously related to lagged returns, suggesting that order flow has two opposing

components: a transitory component that reverses in the short term and a permanent com-

ponent that persists in the long term. Following Bianchi, Babiak and Dickerson (2022),

we use lagged returns as a proxy for short-term liquidity effects, and assess the predictive

relation of lagged order flow on future returns, while controlling for lagged returns.

The results reported in Table 3 indicate that, across all specifications, world order flow is

6 This is in line with a long literature on market microstructure, which distinguishes between informed

and uninformed traders and assesses the effect of information-based trading on asset prices. See, for

example, Glosten and Milgrom (1985), Easley and O’Hara (1987) and Easley et al. (1996).
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a highly significant predictor of both one-day ahead and one-week ahead cryptocurrency

returns. The daily predictive regressions exhibit an interesting pattern. Lagged order flow

on its own is not significant (t-stat=1.56). However, after controlling for lagged returns, it is

highly significant (t-stat=5.54). In contrast, lagged returns have a negative and significant

effect (t-stat=-10.63). These findings confirm that lagged order flow has two opposing com-

ponents: the transitory component correlated with lagged returns that exhibits short-term

reversal, and a permanent component, uncorrelated to lagged returns, that is positively re-

lated to future returns. By conditioning on both lagged order flow and lagged returns, we

uncover the positive predictive ability of daily world order flow.

For the weekly predictive regressions, world order flow has a consistent positive and sig-

nificant predictive power for future returns whether we condition on lagged returns or not.

Weekly lagged returns still exhibit a significant negative coefficient, though of much lower

magnitude and significance compared to daily regressions. This aligns with transitory effects

exerting a stronger impact on prices at the daily horizon, while at the weekly horizon, perma-

nent effects such as adverse selection become more dominant. Accordingly, the component

of lagged weekly order flow that is uncorrelated with lagged weekly returns appears to be

the dominant component of weekly order flow leading to consistently positive and significant

predictions.

The strong positive predictive effect of world order flow for both daily and weekly returns

is consistent with the permanent view. Our findings provide evidence against both the non-

predictability and the transitory view. Specifically, in the full specification that includes

the control variables, an increase in lagged world order flow by one standard deviation is

associated with a 0.2% increase in daily returns and a 0.9% increase in weekly returns. The

increasing strength of this predictive relation for longer horizons provides empirical support

for the permanent view of the effect of order flow on cryptocurrency returns.

Relevant to our analysis, Makarov and Schoar (2020) study the relation between order flow
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and future returns specifically for Bitcoin. They find a significant negative relation be-

tween order flow and one-day-ahead returns, and a positive but statistically insignificant

relationship with one-week-ahead returns. In this context, by using a broad cross-section of

cryptocurrencies, our approach reveals the full predictive power of order flow.

In addition to order flow, most control variables are significant in the predictive regressions.

The exceptions are as follows: the TED spread for daily returns and the term and default

spreads for weekly returns. Finally, note that the daily predictive regression delivers an

R̄2 = 1.2% and the weekly predictive regressions an R̄2 = 3.1%.

3.2 Panel Regressions with All International Order Flows

In addition to panel regressions conditioning on just world order flow, we also estimate panel

regressions that condition on all 11 international order flows. The panel regressions are set

up in the same way as previously and condition on the same control variables. We estimate

two types regressions: one with just the 11 international order flows and one with the 11

order flows plus the aggregate world order flow. We use daily and weekly data and repeat

for both contemporaneous and predictive regressions.7

3.2.1 Contemporaneous Regressions

The results from contemporaneous regressions are shown in Table 4. Our main finding is

that, for both daily and weekly returns, world order flow has the highest and most significant

coefficient. Specifically, a one standard deviation increase in world order flow is associated

with a 1.9% increase in returns at the daily horizon (t-stat=29.33) and a 2.7% increase at

7 Note that regressions which condition on the 11 international order flows plus world order flow do not

suffer from multicollinearity due to the standardization of all order flows. Specifically, if we regress the

standardized world order flow on its 11 standardized components, the R2 is equal to 0.50.
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the weekly horizon (t-stat=10.91). Other than world order flow, US and Korean order flows

remain significant in all specifications. The full set of order flows together with the control

variables explain 12% of daily crypto returns and 21.2% of weekly returns.

These results justify the use of disaggregated international order flows (including US order

flow) over and above world order flow. They also motivate the inclusion of South Korea

to the sample since it is consistently highly significant. In short, the empirical evidence

indicates that order flows on a global scale have explanatory power for contemporaneous

cryptocurrency returns.8

3.2.2 Predictive Regressions

Turning to the predictive regressions, the results reported in Table 5 indicate that world order

flow still has the highest and most significant coefficient. Now, a one standard deviation

increase in world order flow is associated with a 0.2% increase in future daily returns (t-

stat=5.09) and a 0.9% increase in future weekly returns (t-stat=4.35). For the predictive

regressions, very few of the international order flows are significant: South Korea and Canada

for daily returns and Sweden for weekly returns. Notably, US order flow is not significant in

the presence of world order flow, which motivates the focus of our main analysis on world

rather than US order flow. The R̄2 is equal to 1.3% for daily predictive regressions and

3.1% for weekly predictive regressions. This indicates that there is higher predictive power

associated with weekly than daily returns. In conclusion, our main finding is that world

order flow is a more powerful and significant predictor than any of the individual order flows

in the context of in-sample panel regressions.9

8 In the foreign exchange literature, several studies use disaggregated order flows by counterparty type

(e.g., customer types). See, for example, Evans and Lyons (2005) and Menkhoff et al. (2016).

9 For brevity, we do not report the coefficient estimates for the control variables in the panel regressions

with international order flows. These coefficients are largely the same as with just world order flow.
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4 Out-of-Sample Analysis

We perform an out-of-sample analysis of the predictive ability of order flow for cryptocur-

rency returns using popular machine learning (ML) methods (see, e.g., Gu, Kelly and Xiu,

2020). Out-of-sample forecasting of asset returns is notoriously difficult (see, e.g., Welch and

Goyal, 2008), which is likely exacerbated in the case of cryptos due to their high volatil-

ity. Traditional prediction methods based on ordinary least squares (OLS) regressions are

likely to underperform when conditioning on a high number of predictors such as the 11

international order flows and the additional control variables that we use to forecast one-day

ahead cryptocurrency returns. ML methods are more suitable for out-of-sample forecasting

because they emphasize techniques for variable selection and dimension reduction, which can

accommodate a large set of predictors as well as a richer specification of functional forms.

4.1 ML Models

As our benchmark model, we use linear regression estimated with pooled OLS. The bench-

mark model is motivated by the predictive panel regression approach for in-sample analysis.

In addition to the OLS benchmark, we consider a variety of linear and non-linear models

from the rapidly expanding ML literature on forecasting asset returns (Gu, Kelly and Xiu,

2020). For penalized linear models, we include Ridge regression (RR), Lasso (LAS) and

the Elastic Net (EN). We also employ principal component regression (PCR) as a linear

dimension reduction technique. To incorporate non-linearities and predictor interactions, we

consider tree-based models, which include the random forest (RF) and stochastic gradient

boosted regression trees (SGB) as well as feed-forward neural networks with 1 to 4 hidden

layers (NN1-NN4). A comprehensive description of these models can be found in Section A1

of the Online Appendix.
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As previously discussed, cryptocurrency returns exhibit extremely heavy tails, characterized

by high positive skewness and very high kurtosis. To mitigate the impact of heavy-tailed

data, we adopt the robust Huber objective function, which combines the ℓ2 loss for small

errors and ℓ1 loss for large errors. We estimate all models, except for RF, using the Huber

objective function. For RF only, we follow Gu, Kelly and Xiu (2020) in using the default ℓ2

loss function due to RF’s inherent robustness to outliers. In unreported results, we find that

models estimated using the Huber objective function generally outperform those estimated

with the mean squared error (MSE) objective function for cryptocurrency data. See Section

A1.7 of the Online Appendix for a detailed description of the Huber objective function.

We also form forecast combinations, which are designed to combine the forecasts of a set

of models (see, e.g., Timmermann, 2006). Following Rapach, Strauss and Zhou (2010), we

compute the equally-weighted average of all forecasts across a set of models at each point

in time, referred to as the “mean” combination. We compute combined forecasts for two

cases: linear models (L-Mean) and non-linear models (NL-Mean). Comparing the non-linear

forecast combination to the linear combination allows us to assess the improved predictive

ability gained from incorporating non-linearities and predictor interactions. For a detailed

description of forecast combinations, see Section A1.6 of the Online Appendix.

4.2 Estimation Procedure and Performance Evaluation

We recursively generate out-of-sample daily forecasts for each model by dividing our sample

into three disjoint sets: the training, validation and test sets. First, we estimate the model

parameters on a training sample T1 spanning one year (February 14, 2018 to February

14, 2019). Second, we conduct an extensive hyperparameter optimization on a one-year

validation sample T2 (February 15, 2019 to February 14, 2020). Third, we evaluate the out-

of-sample performance of each model using an initial one-month test sample (February 18,
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2020 to March 13, 2020). We keep the model parameters fixed for one month and repeat this

process by rolling forward the validation and test sets by one month, while expanding the

training sample by one month in each iteration. We continue this process to the end of the

sample so that the total test sample (T3) ranges from February 18, 2020 to June 30, 2022.

Section A2 in the Online Appendix provides detailed information on the hyperparameter

optimization setup for each model.10

Our primary performance metric is the modified Welch and Goyal (2008) out-of-sample R2

(R2
oos) statistic used by Gu, Kelly and Xiu (2020):

R2
oos = 1−

∑
(i,t)∈T3(ri,t+1 − r̂i,t+1)

2∑
(i,t)∈T3(ri,t+1)2

, (4)

where ri,t+1 and r̂i,t+1 denote the realized t+1 return and one-day ahead t+1 forecast for coin

i, respectively, and T3 indicates that the metric is only assessed on the test sample. The R2
oos

statistic pools forecast errors across coins and over time into a comprehensive panel-level

assessment of each model’s predictive ability. It measures the reduction in MSE achieved

by each model relative to a naive forecast, which predicts zero returns for all coins (i.e., a

random walk for prices with no drift). In unreported results, we explore several alternative

benchmarks, including the use of historical mean returns typically employed in equity market

forecasts. However, we find that the naive forecast of zero returns consistently produces the

lowest R2
oos, making it the most conservative benchmark.11

10 Note that our out-of-sample analysis focuses on daily forecasts since the short sample period prohibits

performing weekly ML forecasting.

11 For the R2
oos statistic, there is a standard way of assessing statistical significance based on the Clark and

West (2006, 2007) testing procedure. However, we find that the R2
oos values are significant at the 1%

confidence level for nearly every model and specification. Hence, we omit these results for presentation

purposes, but they are available upon request.
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4.3 Out-of-Sample Performance

In Table 6, we report results on the out-of-sample statistical performance of the models. Our

analysis compares models conditioning on three distinct information sets: (1) ML models

that condition on just order flow (OF); (2) ML models that condition on just economic

fundamentals (EF) (i.e., models that condition on just the control variables, not order flow);

and (3) ML models that condition on both OF and EF. This grouping of models allows us

to assess whether order flow is essential in generating reliable out-of-sample forecasts for

cryptocurrency returns over and above economic fundamentals. All models condition on

lagged returns to capture short-term reversals. Additionally, for the training, validation and

test sets, we standardize each variable using its mean and variance from the training set as is

standard practice in the ML literature. Our main findings can be summarized as follows.12

The first column of Table 6 shows that OF models generate higher R2
oos values than both

EF and OF+EF models, presented in the second and third columns, across 13 of the 14

ML specifications. The better performance of OF over EF indicates that international order

flows convey more predictive information than economic fundamentals. Similarly, the better

performance of OF over OF+EF suggests that economic fundamentals contribute limited ad-

ditional predictive value, as their information is largely spanned by order flow. Hence, adding

economic fundamentals to the order flow variables primarily increases variance without en-

hancing signal, causing most models to overfit and yield negative R2
oos values in the OF+EF

specification. Overall, this comparison across columns provides compelling evidence that

order flow is the best information set in our analysis for predicting future crypto returns.13

12 For standard exchange rates, machine learning techniques have been used by Gradojevic and Yang

(2006) in assessing the predictive ability of order flow and Li, Tsiakas and Wang (2015) in assessing the

predictive ability of economic fundamentals.

13 The R2
oos statistic is based on the MSE, which places high emphasis on large errors thus enhancing the

effect of outliers. To address this issue, we also compute the R1
oos statistic, which is based on the mean

absolute error (MAE) and is, therefore, less sensitive to outliers. In unreported results, we find that the
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Next, comparing across linear OF models, the first column of Table 6 indicates that all

linear models yield negative R2
oos values, suggesting that a linear specification lacks the

complexity needed to outperform the naive benchmark. OLS has the lowest R2
oos value of

any individual model (−1.24%), which implies that OLS forecasts are outperformed by a

naive forecast of zero.14 This result is unsurprising, as OLS is prone to overfitting due

to its lack of regularization. Adding shrinkage with a ridge penalty slightly improves the

R2
oos value to −1.18% for RR. Restricting OLS to a sparse parameterization with the lasso or

elastic net penalty improves the R2
oos value to −0.38% for both LAS and EN, highlighting the

importance of sparsity in predicting crypto returns. In contrast, regularization via dimension

reduction performs poorly; PCR achieves an R2
oos value of only −1.01%, suggesting that the

PCA-derived latent factors are not highly predictive of crypto returns. L-Mean has the

lowest R2
oos value at −1.33%, indicating that even combining forecasts cannot enhance the

performance of linear models.

Notably, all non-linear OF models generate positive R2
oos values, which demonstrates the

importance of non-linearities and variable interactions in the predictive relation between

order flow and future crypto returns. RF raises the R2
oos to 0.36% by capturing non-linearities

and interactions through decision trees. SGB is the best performer, further increasing the

R2
oos to 0.66%, reinforcing the role of sparsity since SGB is often considered a sparse model.

Among neural networks, NN3 achieves the highest R2
oos at 0.39%, which aligns with the

findings of Gu, Kelly and Xiu (2020). NL-Mean achieves an R2
oos of 0.52%, suggesting that

combining forecasts generally enhances the performance of non-linear models.

Finally, we compare our ML OF models to other studies on crypto return prediction using

ML techniques, which do not condition on order flow. For example, Cakici et al. (2024)

R1
oos produces the same ranking across models as the R2

oos.

14 These results do not contradict the strong in-sample predictive ability of order flow shown in Table

3 since out-of-sample predictability is inherently more challenging than in-sample performance (Welch

and Goyal, 2008).
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predict crypto returns using ML models conditioning on 40 characteristics, not including

order flow. Their best-performing model (OLS) achieves an R2
oos value of -0.21%, which

outperforms our OLS model’s R2
oos value of -1.24% but substantially underperforms all our

non-linear models conditioning on order flow.15

In light of these results, we conclude the following: (1) conditioning on order flow provides

superior forecasts relative to conditioning on economic fundamentals, and (2) non-linear ML

models for cryptocurrency returns consistently outperform both linear models and the naive

benchmark. In summary, order flow offers significant out-of-sample predictive power for

cryptocurrency returns beyond that of economic fundamentals.

5 The Economic Value of Order Flow

5.1 Portfolio Sorts

In this section, we assess the out-of-sample economic value of conditioning on order flow. Our

approach is based on generating portfolios by sorting the cross-section of cryptocurrencies

on one of two criteria: (1) the world order flow of each coin; (2) the ML return forecast for

each coin generated by models conditioning on one of the three information sets discussed

in Section 4.3 (OF, EF, OF+EF). This approach provides a comprehensive assessment of

the economic gains associated with the out-of-sample predictive ability of order flow, and its

relative economic gain over other information sets.

The portfolio sorting procedure is implemented as follows. At each time t, we rank all coins

using one of the two criteria listed above: world order flow or the ML forecasts. Based on this

15 Filippou, Rapach and Thimsen (2024) report R2
oos values up to 2.08% for SGB, but theirR2

oos benchmark

is the historical mean rather than zero, making direct comparison with our results challenging.

24



ranking, we allocate the 82 coins into five quintile portfolios. Allocating assets to quintile

portfolios is a standard approach in the asset pricing literature and ensures that there is a

sufficient number of cryptos in each portfolio. Then, we compute the t+ 1 equally-weighted

portfolio returns and the Newey and West (1987) t-statistic.16 When sorting on world order

flow, we report results for both daily and weekly rebalancing. When sorting based on ML

forecasts, we only report results for daily rebalancing since the short sample period is not

well-suited for weekly ML forecasts. All portfolio sorts are performed purely out of sample

with no look-ahead bias. In short, the portfolio sorts allow us to assess whether order flow

has predictive information for portfolio returns over the next period.17

We report results on the mean daily (or weekly) percent return for the five quintile portfolios

(P1 to P5). We primarily focus on the zero-cost investment portfolio that goes long on the

top portfolio and short on the bottom portfolio (P5 − P1). For this portfolio, we report the

mean return, alpha and Sharpe ratio. Following Liu, Tsyvinski and Wu (2022), the alpha is

estimated by regressing the portfolio return on three factors: (1) the market return defined

as the value-weighted return of all 82 coins; (2) the size factor defined as the return difference

between the small size portfolio (bottom 30% in market cap) and the big size portfolio (top

30% in market cap), and (3) the momentum factor based on 2×3 sorts on size and three-week

returns. To construct these common factors at the daily (weekly) interval, we replicate their

methodology using our sample of 82 coins and reconstitute the portfolios daily (weekly).

16 In computing the Newey and West (1987) t-statistic, we use the Bartlett kernel with the data-driven

bandwidth parameter selected by the AR(1) model (see, e.g., Andrews, 1991).

17 For cryptocurrencies, it is sensible to use equal weights as opposed to value weights because value

weights would be dominated by the top 5 cryptos, which on a given day comprise approximately 90% of

the total market cap. Consequently, using equal weights allows us to take full advantage of the breadth

of information available in our data set.
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5.2 Portfolio Performance

5.2.1 Sorting on Order Flow

We begin our discussion of portfolio performance by reporting results in Table 7 for daily and

weekly portfolio sorts on world order flow (OFW ). In addition to sorting on OFW , we also

sort on an orthogonalized OFW variable (ortho-OFW ), which is orthogonalized relative to

same-period returns.18 As shown in Table 3, lagged order flow is comprised of one component

that is correlated with lagged returns, reflecting transitory effects, and another component

that is uncorrelated with returns, reflecting permanent effects. Using an orthogonalized OFW

ensures that portfolio sorts rely on lagged order flow information exclusive of any information

in lagged returns. The sample period spans from February 18, 2020, to June 30, 2022.19

Panel A in Table 7 indicates that the performance of the daily long-short portfolio (P5−P1)

tends to be strong for the orthogonalized OFW but not for the original non-orthogonalized

OFW . For example, the daily mean return of P5 − P1 when sorting on OFW is equal to

−0.03% with a t-stat=-0.19, which however jumps to 0.29% with a t-stat=2.11 for sorting

on ortho-OFW . Furthermore, ortho-OFW exhibits an annualized Sharpe ratio of 1.34.20

These findings are not surprising. As we have seen in the daily predictive panel regressions,

order flow alone is insignificant but when controlling for lagged returns it is highly significant.

This indicates that the part of lagged order flow that is uncorrelated with lagged returns

has strong positive predictive power. In portfolio sorts, we capture the same effect by

18 Daily (weekly) ortho-OFW is defined as the last residual from a recursive regression of lagged order

flow on lagged returns, which is estimated using an expanding window that is updated daily (weekly).

Notably, this approach avoids any forward-looking bias as only information available up to time t is

used to construct ortho-OFW .

19 The portfolio sorts on world order flow use the same sample period as the sorts on ML forecasts so that

all portfolio results are comparable.

20 For the results on portfolio sorts conditioning on just US order flow, please see Table A6.
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orthogonalizing OFW , which is essential in generating strong positive portfolio performance.

Importantly, the positive relation between ortho-OFW and future coin returns suggests a

permanent effect of order flow on crypto prices.

Panel B in Table 7 shows that the weekly results are strong regardless of orthogonalization.

For portfolio sorts on the weekly OFW , the mean of P5 − P1 is equal to 1.61% per week

and significant (t-stat=2.13). The alpha is similar (1.44% per week) and also significant

(t-stat=2.02), demonstrating that the economic value cannot be explained by the crypto

market, size, or momentum factors. The annualized Sharpe ratio is equal to 1.68. The

results for ortho-OFW are only slightly stronger: the long-short mean is equal to 1.74%

(t-stat=2.28), the alpha is 1.52% (t-stat=2.11) and a Sharpe ratio of 1.79. Therefore, the

orthogonalization of world order flow leads to a large improvement for daily returns but a

small improvement for weekly returns, which is consistent with lagged returns having weaker

predictive power for future weekly returns in the in-sample panel regressions. Taken together,

these results indicate that there is strong out-of-sample economic value for portfolios sorted

on world order flow.

5.2.2 Sorting on ML Forecasts

In Table 8, we report results on portfolio sorts based on the daily forecasts generated by

ML models, which condition on the 11 international order flows. This approach enables

an assessment of whether there are economic gains with conditioning on all order flows as

opposed to just world order flow as we did previously. Given that the training and validation

sets require two years of data, the test period begins on February 18, 2020, which is the same

period as the sorts on world order flow.

We emphasize three key findings regarding ML model performance. First, non-linear models

conditioning on OF achieve higher Sharpe ratios than those conditioning on EF or OF+EF
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across all non-linear models, except NN1. For example, the NL-Mean model generates an

annualized Sharpe ratio of 3.45 for OF, compared to 1.88 for EF and 2.04 for OF+EF. This

means the Sharpe ratio for NL-Mean with OF is nearly double that with EF. The top-

performing model overall is SGB conditioning on OF, with a Sharpe ratio of 3.63, aligning

with the highest R2
oos value delivered by the same model shown in Table 6. RF and NN3

also deliver high Sharpe ratios of 3.19 and 3.04, respectively, aligning with their relatively

high R2
oos values.

Second, while linear models perform similarly across the three information sets, they are

outperformed by non-linear models conditioning on OF. For example, the best linear model,

OLS conditioning on EF, delivers a Sharpe ratio of 2.54, which is lower than that of RF,

SGB, NN2, NN3, and NL-Mean conditioning on OF. These results underscore the importance

of model complexity in generating economic value with ML OF models, aligning with the

“virtue of complexity” in return prediction (Kelly, Malamud and Zhou, 2024).21

Third, our models conditioning on OF outperform leading benchmarks for crypto return

prediction using ML techniques that do not condition on OF. For example, Filippou, Rapach

and Thimsen (2024) construct daily equally-weighted long-short portfolios using various ML

models conditioning on 54 characteristics representing network value, activity, momentum,

technical signals and online activity, but excluding order flow. Their models yield annualized

Sharpe ratios of 1.44, 2.68, 1.14, and 2.57 for RF, SGB, NN3, and NL-Mean, respectively. In

comparison, Table 8 shows that the same models conditioning on OF achieve Sharpe ratios

of 3.19, 3.63, 3.04, and 3.45, respectively, demonstrating the additional economic value of

order flow. Additionally, the best-performing model (OLS) in Cakici et al. (2024) achieves

a weekly three-factor alpha of 1.98%, which is considerably lower than SGB conditioning on

21 OLS is considered to have higher complexity, i.e., more parameterization, than regularized linear models

such as RR, LAS and EN. Therefore, OLS outperforming these regularized linear models aligns with

the “virtue of complexity” (Kelly, Malamud and Zhou, 2024).
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OF, yielding a weekly alpha of 5× 0.79 = 3.95%.

To illustrate these results, in Figure 1 we report the cumulative return of the long-short

portfolio of select ML OF models against the return of the market portfolio, which is the

value-weighted return of all coins in the sample. The figure confirms that the non-linear

models consistently outperform the linear models throughout the sample period. It is also

interesting to note that the non-linear models continue to perform well even when the market

portfolio exhibits a negative return in the last year of the sample.

Overall, we can summarize the main results as follows: (1) the non-linear ML OF models

perform the best and their performance is excellent by any standard. A daily long-short mean

return of 0.78% for the best model (SGB) corresponds to an annualized return of 196.56%

and an annualized SR = 3.63; (2) the linear ML models consistently underperform the non-

linear models, demonstrating that model complexity is important for generating economic

value; (3) the OLS benchmark performs well relative to regularized linear models; (4) the

combined forecasts are among the best performers (5) the portfolios sorted on the daily ML

models perform substantially better than portfolios sorted directly on world order flow; and,

finally, (6) ML models conditioning on OF outperform leading benchmarks that use ML

models without conditioning on OF. In short, there is high economic value in conditioning

on all 11 international order flows in the context of non-linear ML models.

6 Economic Restrictions

6.1 Short-sale Constraints, Drawdowns, and Transaction Costs

Our portfolio analysis has so far focused on the long-short portfolio because it is well suited for

illustrating the economic value of conditioning on order flow. In other words, if order flow is a
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good predictor, it should be able to identify which portfolio performs well and which one does

not. Then, investors would benefit from a zero-cost trading strategy that goes long on the

top portfolio and short on the bottom portfolio. However, in the cryptocurrency market, it

may be difficult, even impossible, to short some cryptocurrencies. When possible, additional

shorting fees will apply (see, e.g., Liu, Tsyvinski and Wu, 2022). Since the objective of a

typical investor is to generate a realistic trading strategy that avoids shorting and is subject

to lower transaction costs, we focus on just the long portfolio. For this reason, in Table 9, we

report detailed results on the performance of the daily long OF portfolio (P5) and compare

them to the corresponding daily long-short OF portfolio (P5 − P1).

For a comprehensive assessment of performance of the most realistic trading strategies, we

report the mean return, alpha, and Sharpe ratio, Additionally, in assessing economic restric-

tions, we report the maximum drawdown (MDD), turnover (TO) and break-even transaction

cost (BE-TC) as advocated by Avramov, Cheng and Metzker (2023). The maximum draw-

down is defined as the maximum cumulative loss from the portfolio’s price peak to the

following trough. A reasonably low MDD is indicative of the success of a trading strategy

because large drawdowns often lead to fund redemptions.

Following Gu, Kelly and Xiu (2020), we define the turnover of the long-short portfolio at

time t as follows:

TOt =
1

2

∑
i∈L

∣∣∣∣∣wi,t −
wi,t−1(1 + ri,t)∑

k∈L wk,t−1(1 + rk,t)

∣∣∣∣∣+ 1

2

∑
j∈S

∣∣∣∣∣wj,t −
wj,t−1(1 + rj,t)∑

n∈S wn,t−1(1 + rn,t)

∣∣∣∣∣ , (5)

where i ∈ L (j ∈ S) indicates that coin i (j) belongs to the long (short) portfolio, wi,t

(wj,t) refers to the weight of coin i (j) at time t, and ri,t (rj,t) refers to the return of coin i

(j) at time t. By design, the turnover of long and short positions ranges between 0 and 1.

Accordingly, the turnover of the long-short portfolio defined above ranges between 0 and 2.
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Finally, we compute the break-even transaction cost (BE-TC) as the portfolio return divided

by turnover (see, e.g., Avramov, Cheng and Metzker, 2023). The BE-TC is equal to the

daily/weekly proportional transaction cost required to eliminate the gains from the trading

strategy. For example, if the portfolio return is equal to 1% per day and the turnover is 0.8,

then the BE-TC is equal to 1%÷0.8 = 1.25% per day, and the proportional transaction cost

would have to be 1.25% per day to eliminate all the gains of the portfolio.

Overall, we find that the performance of the long portfolio is strong. Compared to the

long-short portfolio, the long portfolio tends to have a higher mean return and alpha, lower

Sharpe ratio in addition to lower turnover and higher break-even transaction cost. Consider,

for example, the NL-Mean OF model. The long portfolio delivers a daily mean return

of 0.79% (t-stat=2.96), an alpha of 0.81% (t-stat=2.99) and SR = 1.88. The maximum

drawdown is equal to 0.66, the turnover is equal to 0.77 and the break-even transaction cost

is equal to 1.02. For reference, the long-short portfolio for the same model delivers a similar

mean return (0.75%) and alpha (0.76%) but a higher Sharpe ratio (3.52) at the expense of

much higher turnover (1.55) and much lower break-even transaction cost (0.48%).

In terms of evaluating the level of the break-even transaction cost for the long portfolio, it is

helpful to note that realistic transaction costs for the cryptocurrency market are estimated

to be in the range of 0.3%-0.5%. For example, Bianchi, Babiak and Dickerson (2022) apply a

fixed transaction cost of 0.3% for their long strategy, whereas Liu, Tsyvinski and Wu (2022)

estimate the effective bid-ask spread to be around 0.5% since 2018. In this context, a break-

even transaction cost of about 1% for the NL-Mean (or other non-linear models) comfortably

clears the bar, thus leading to a profitable strategy net of transaction costs. Based on these

results, we conclude that conditioning on order flow, especially in the context of non-linear

machine learning forecasts, generates high economic value for long-only investors who pursue

a realistic trading strategy investing in cryptocurrencies.
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6.2 Limits to Arbitrage

Our main result is that order flow itself as well as ML models that condition on order flow

positively predict future crypto returns. It might be expected that arbitragers would identify

this opportunity and drive prices toward their fundamental values. However, Shleifer and

Vishny (1997) and Pontiff (2006) argue that there are limits to arbitrage, which in our

context could potentially explain the strong positive relation between order flow and future

returns. A testable implication of this argument is that the relation between order flow and

future returns should be more pronounced in coins that are more difficult to arbitrage.

Rather than relying on a single proxy for arbitrage costs, we follow Atilgan et al. (2020) and

Liu, Tsyvinski and Wu (2022) in constructing an arbitrage index (AI) using a number of

indicators known to capture important dimensions of limits to arbitrage. First, we build an

index at the coin-level, for which we include size, idiosyncratic volatility (Ang et al., 2006),

and illiquidity (Amihud, 2002).22 To construct the AI, we sort coins in increasing order

based on their idiosyncratic volatility and illiquidity, and decreasing order based on their

size. Each coin is given the corresponding score of its quintile rank for each variable. Then,

the arbitrage cost index is the sum of the three scores, which ranges from 3 to 15. A higher

value implies greater limits to arbitrage.

Based on the AI of each coin at time t, we form tercile splits in order to compare the

predictability of machine learning forecasts with different levels of the arbitrage index. In

the last column of Table 10, we report the R2
oos values for each AI tercile. The results

indicate that the L-Mean model exhibits a negative R2
oos for the low and medium AI tercile

and a barely positive R2
oos for the high AI tercile. In contrast, the NL-Mean model exhibits

a positive R2
oos for all three AI terciles with the highest R2

oos being associated with the low

22 Idiosyncratic volatility is defined as the volatility of residuals from the three factor model (Liu, Tsyvinski

and Wu, 2022) over the previous 21 days. Illiqudity is defined as the ratio of the absolute value of returns

over daily total volume, averaged over the past 21 days.
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AI tercile. This is strong statistical evidence that the NL-Mean model performs best for the

crypto portfolio that is the easiest to arbitrage.

We also conduct a bivariate sort analysis. First, at time t, we split the coins in our sample

into terciles based on the AI. Second, within each tercile, we further sort coins into terciles

by either the orthogonalized order flow or the ML forecast conditioning on order flows. Table

10 reports the double sort results for ortho-OFW , L-Mean, and NL-Mean. The first panel

shows that for the low AI tercile, the long-short portfolio based on ortho-OFW achieves

an alpha of 0.33% (t-stat=2.86) and a Sharpe ratio of 1.96. In contrast, for the high AI

tercile, the long-short portfolio based on ortho-OFW achieves an insignificant alpha of 0.13%

(t-stat=0.66) and a Sharpe ratio of only 0.36. These results demonstrate that the economic

value of order flow cannot be explained by limits to arbitrage, as the long-short performance

is strongest in coins that are the easiest to arbitrage, i.e., the largest, most liquid, and lowest

volatility coins.

The second panel shows that for the low and medium AI terciles, the long-short portfolio

based on L-Mean has insignificant alphas. In contrast, for the high AI tercile, the portfolio

achieves an alpha of 0.71 (t-stat=3.46) and a Sharpe ratio of 2.19. This indicates that the

economic value of linear ML models is concentrated in coins with the highest arbitrage costs.

Importantly, the third panel reveals that for NL-Mean, all AI terciles display significant

alphas. Additionally, the Sharpe ratios for the low, medium, and high AI terciles are 2.15,

1.25 and 2.65, respectively, suggesting that the performance of non-linear ML models is

robust across coins with varying arbitrage costs. These findings are remarkable considering

that the economic value of ML models not conditioning on order flow can mostly be explained

by limits to arbitrage in stocks (Avramov, Cheng and Metzker, 2023), options (Bali et al.,

2023), and cryptos (Cakici et al., 2024, and Filippou, Rapach and Thimsen, 2024).

Table A7 presents a bivariate sort analysis for L-Mean and NL-Mean conditioning purely on
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economic fundamentals (EF). For both models, the Sharpe ratios are the lowest in the bottom

AI tercile and increase monotonically as we move to the top AI tercile. This clearly indicates

that the long-short portfolio returns for models conditioning on economic fundamentals have

economic value only for small, illiquid, and volatile coins. This finding further illustrates the

economic value of ML predictions conditioning on OF compared to EF.

Overall, these results show that the economic value of orthogonalized order flow and non-

linear ML models cannot be explained by limits to arbitrage. In contrast, arbitrage costs

can explain the economic value of linear ML models conditioning on order flow as well as

(linear and non-linear) ML models conditioning on economic fundamentals. In light of these

results, we conclude that the permanent effect of order flow on crypto returns is not limited

to small, illiquid and volatile coins but rather extends to coins which are large, liquid and

less volatile.

7 Conclusion

The meteoric rise of cryptocurrencies as a new investment asset class has triggered an emerg-

ing literature in financial economics. A central theme of this literature is the out-of-sample

prediction of cryptocurrency returns and the design of trading strategies, which are consis-

tently profitable. The foreign exchange literature has established order flow as a prominent

predictor of fiat currency returns representing the microstructure approach to exchange rate

prediction as an alternative to models conditioning on standard economic fundamentals. For

cryptocurrencies, however, there is a gap in the literature as there is little work on the ability

of order flow to explain and predict cryptocurrency returns. Our analysis contributes to this

literature by highlighting the role of order flow for out-of-sample return prediction over and

above standard economic fundamentals.
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We find that order flow matters both for explaining and for predicting the cross-section

of cryptocurrency returns. World order flow has a strong contemporaneous and predictive

relation to cryptocurrency returns in the context of in-sample panel regressions. The combi-

nation of non-linear machine learning techniques with international order flow information

provides an especially powerful predictive toolkit for this market and is associated with high

economic value. For example, the forecast combination of non-linear machine learning mod-

els conditioning on daily order flow delivers an annualized Sharpe ratio of 1.88 for the long

portfolio and 3.52 for the long-short portfolio. Overall, our findings are robust to economic

restrictions, including short-selling constraints, transaction costs, and limits to arbitrage,

providing compelling empirical support for the permanent view of the effect of order flow on

returns. In conclusion, our empirical evidence strongly indicates that information conveyed

by order flow matters for cryptocurrency returns.
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Table 1: Variance Decomposition of World Order Flow

This table reports the variance decomposition of world order flow into its 11 country components. The
values represent the percent variance contribution of each country to world order flow at the daily and
weekly frequency. The sample period ranges from February 14, 2018 to June 30, 2022.

Daily % Weekly %

OFUSD 39.11 45.56

OFKRW 23.70 26.84

OFEUR 10.35 8.47

OFGBP 5.59 3.52

OFNZD 3.63 3.60

OFCHF 3.61 1.67

OFAUD 3.37 2.22

OFCAD 3.24 1.94

OFNOK 3.04 2.39

OF SEK 2.75 2.31

OF JPY 1.62 1.49

OFW 100 100

41



Table 2: Contemporaneous Panel Regressions with World Order Flow

This table displays panel regression results of cryptocurrency returns on contemporaneous world order flow
and control variables. Order flow is in logs and standardized as described in the data section. Market cap
and volume are in logs. Volatility is the log difference between a coin’s high and low price. The VIX, S&P
500 and MSCI are log returns. The TED spread is the difference between the three-month Treasury bill and
the three-month LIBOR. The short rate is the three-month T-bill rate. The term spread is the difference
between the ten-year and three-month T-bill rates. The default spread is the difference between the AAA
and BAA corporate bonds. All panel regressions use balanced panels with fixed coin effects. Columns (1)-
(2) are for daily returns. Columns (3)-(4) are for weekly returns. The t-statistics shown in parentheses are
computed using Newey and West (1987) standard errors. The sample period ranges from February 14, 2018
to June 30, 2022.

Daily Weekly

(1) (2) (3) (4)

constant
0.002∗∗∗

(6.32)

0.001

(0.55)

0.011∗∗∗

(7.38)

0.058∗∗∗

(6.08)

OFW
i,t

0.022∗∗∗

(36.83)

0.022∗∗∗

(37.62)

0.045∗∗∗

(16.43)

0.040∗∗∗

(16.97)

MCAPi,t
-0.001

(-1.35)

0.019∗∗∗

(6.16)

Volumei,t
0.007∗∗∗

(9.81)

0.010∗∗∗

(4.33)

Volatilityi,t
0.145∗∗∗

(4.78)

0.246∗∗∗

(5.86)

VIXt
-0.044∗∗∗

(-6.49)

-0.089∗∗∗

(-6.44)

TED Spreadt

0.001∗∗∗

(3.89)

0.001∗∗∗

(5.86)

S&P 500t
-0.491∗∗∗

(-6.49)

-4.065∗∗∗

(-13.12)

MSCIGlobal
t

0.767∗∗∗

(8.15)

5.675∗∗∗

(16.97)

Short Ratet
-0.002∗∗∗

(-3.61)

-0.016∗∗∗

(-7.03)

Term Spreadt

-0.009∗∗∗

(-7.12)

-0.056∗∗∗

(-10.90)

Default Spreadt

0.010∗∗∗

(6.34)

0.012∗

(1.69)

R̄2 (%) 7.1 11.0 6.5 19.9

# obs. 90364 90364 16728 16728
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Table 3: Predictive Panel Regressions with World Order Flow

This table displays results of predictive panel regressions of cryptocurrency returns on lagged world order
flow and lagged control variables. The table contains the same information as Table 2 but all variables
are lagged and ri,t−1 is the lagged return of each cryptocurrency. The t-statistics shown in brackets are
computed using Newey and West (1987) standard errors. The sample period ranges from February 14, 2018
to June 30, 2022.

Daily Weekly

(1) (2) (3) (4) (5) (6)

constant
0.002∗∗∗

(5.87)

0.002∗∗∗

(5.96)

0.014∗∗∗

(5.99)

0.013∗∗∗

(7.85)

0.013∗∗∗

(7.96)

0.048∗∗∗

(4.36)

OFW
i,t−1

0.001

(1.56)

0.002∗∗∗

(5.54)

0.002∗∗∗

(6.43)

0.008∗∗∗

(5.03)

0.009∗∗∗

(5.39)

0.009∗∗∗

(5.57)

ri,t−1
-0.060∗∗∗

(-10.63)

-0.072∗∗∗

(-13.43)

-0.020∗∗

(-1.96)

-0.037∗∗∗

(-3.74)

MCAPi,t−1
-0.005∗∗∗

(-9.44)

-0.026∗∗∗

(-8.62)

Volumei,t−1
0.001∗∗

(2.34)

0.005∗∗

(2.45)

Volatilityi,t−1

0.048∗∗∗

(7.59)

0.058∗∗∗

(3.33)

VIXt−1
-0.012∗∗

(-2.12)

-0.109∗∗∗

(-8.55)

TED Spreadt−1

0.000

(0.34)

-0.001∗

(-1.95)

S&P 500t−1
-0.187∗∗

(-2.03)

1.564∗∗∗

(6.57)

MSCIGlobal
t−1

0.546∗∗∗

(5.68)

-1.976∗∗∗

(-6.51)

Short Ratet−1
-0.006∗∗∗

(-9.86)

-0.024∗∗∗

(-8.66)

Term Spreadt−1

-0.004∗∗∗

(-2.87)

-0.009

(-1.46)

Default Spreadt−1

-0.004∗∗

(-2.41)

-0.004

(-0.46)

R̄2 (%) 0.1 0.3 1.2 0.2 0.2 3.1

# obs. 90282 90282 90282 16646 16646 16646
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Table 4: Contemporaneous Panel Regressions with All International Order Flows

This table displays panel regression results of contemporaneous cryptocurrency returns on world order flow,
international order flows and control variables. The table contains the same information as Table 2 but for
all international order flows plus the world order flow. The t-statistics shown in parentheses are computed
using Newey and West (1987) standard errors. The sample period ranges from February 14, 2018 to June
30, 2022. The panel regressions also condition on the control variables reported in the previous tables but
these results are not reported to save space.

Daily Weekly

(1) (2) (3) (4)

constant
0.002

(0.88)

0.001

(0.23)

0.059∗∗∗

(6.17)

0.056∗∗∗

(5.86)

OFW
i,t

0.019∗∗∗

(29.33)

0.027∗∗∗

(10.91)

OFUSD
i,t

0.012∗∗∗

(24.93)

0.005∗∗∗

(10.68)

0.025∗∗∗

(12.48)

0.015∗∗∗

(7.28)

OFKRW
i,t

0.012∗∗∗

(23.53)

0.006∗∗∗

(13.77)

0.021∗∗∗

(10.88)

0.014∗∗∗

(7.24)

OFEUR
i,t

0.004∗∗∗

(10.77)

0.001

(1.48)

0.011∗∗∗

(5.81)

0.007∗∗∗

(3.46)

OFGBP
i,t

0.002∗∗∗

(5.23)

-0.001

(-3.32)

0.004∗∗

(2.30)

0.001

(0.42)

OFJPY
i,t

0.001∗∗∗

(3.89)

-0.001

(-0.90)

0.001

(0.58)

-0.001

(-0.92)

OFCAD
i,t

0.001∗∗∗

(3.40)

-0.001∗∗∗

(-3.46)

0.004∗∗∗

(3.14)

0.002

(1.49)

OFAUD
i,t

0.001∗∗

(2.12)

-0.002∗∗∗

(-4.72)

0.003∗

(1.74)

0.001

(0.07)

OFCHF
i,t

0.000

(0.68)

-0.002∗∗∗

(-6.90)

-0.001

(-0.27)

-0.003∗

(-1.82)

OFNZD
i,t

0.001∗∗

(1.96)

-0.002∗∗∗

(-5.45)

0.001

(0.10)

-0.003∗

(-1.95)

OFNOK
i,t

0.000

(0.88)

-0.002∗∗∗

(-5.96)

0.002

(1.52)

-0.001

(-0.23)

OFSEK
i,t

0.000

(0.64)

-0.002∗∗∗

(5.61)

0.001

(0.82)

-0.001

(-0.81)

R̄2 (%) 9.4 12.0 19.8 21.1

# obs. 90364 90364 16728 16728
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Table 5: Predictive Panel Regressions with All International Order Flows

This table displays results of predictive panel regressions of cryptocurrency returns on lagged world order
flow, international order flows and control variables. The table contains the same information as Table 3
but for all international order flows plus the world order flow. The t-statistics shown in parentheses are
computed using Newey and West (1987) standard errors. The sample period ranges from February 14, 2018
to June 30, 2022. The panel regressions also condition on the control variables reported in the previous
tables but these results are not reported to save space.

Daily Weekly

(1) (2) (3) (4)

constant
0.014∗∗∗

(6.03)

0.014∗∗∗

(5.98)

0.049∗∗∗

(4.43)

0.048∗∗∗

(4.36)

OFW
i,t−1

0.002∗∗∗

(5.09)

0.009∗∗∗

(4.35)

OFUSD
i,t−1

-0.001∗

(1.70)

-0.001

(-0.77)

0.004∗∗∗

(2.94)

0.001

(0.55)

OFKRW
i,t−1

0.002∗∗∗

(5.55)

0.001∗∗∗

(3.29)

0.001

(0.91)

-0.001

(-0.86)

OFEUR
i,t−1

0.001

(1.02)

-0.001

(-0.38)

0.003∗

(1.78)

0.001

(0.71)

OFGBP
i,t−1

0.000

(0.12)

-0.001

(-0.86)

-0.001

(-0.27)

-0.001

(-1.01)

OFJPY
i,t−1

0.001∗

(1.69)

0.001

(1.09)

-0.001

(-0.13)

-0.001

(-0.66)

OFCAD
i,t−1

-0.001

(-1.57)

-0.001∗∗

(-2.38)

0.002

(1.55)

0.001

(1.00)

OFAUD
i,t−1

-0.001

(-0.85)

-0.001∗

(-1.68)

-0.001

(-0.79)

-0.002

(-1.35)

OFCHF
i,t−1

0.001

(0.57)

-0.000

(-0.30)

0.001

(1.03)

0.001

(0.47)

OFNZD
i,t−1

0.000

(0.11)

-0.001

(-0.76)

0.003∗∗

(2.38)

0.002

(1.58)

OFNOK
i,t−1

0.001

(0.96)

0.000

(0.13)

0.001

(0.97)

0.001

(0.34)

OFSEK
i,t−1

-0.001

(-0.74)

-0.001

(-1.51)

-0.002∗

(-1.78)

-0.003∗∗

(-2.40)

ri,t−1
-0.070∗∗∗

(-13.16)

-0.073∗∗∗

(-13.51)

-0.032∗∗∗

(-3.22)

-0.037∗∗∗

(-3.74)

R̄2 (%) 1.2 1.3 3.0 3.1

# obs. 90282 90282 16646 16646
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Table 6: Out-of-Sample Statistical Performance

This table reports the out-sample statistical performance of the models using the R2
oos statistic in percent

based on the Mean Squared Error (MSE) of the forecasts. The MSE is computed using an expanding window.
Daily results are reported for three information sets: OF only conditions on order flows; EF only conditions
on economic fundamentals; and OF+EF conditions on both. All models condition on lagged returns. Bold
entries indicate the highest value in each row.

Daily R2
oos (%)

OF EF OF+EF

OLS -1.24 -19.80 -20.11

RR -1.18 -16.83 -17.23

LAS -0.38 -0.55 -0.51

EN -0.38 -0.30 -0.30

PCR -1.01 -1.50 -1.72

RF 0.36 -0.15 -0.30

SGB 0.66 0.61 0.50

NN1 0.20 -0.12 -0.23

NN2 0.28 0.04 -0.01

NN3 0.39 -1.64 -1.14

NN4 0.13 -2.05 -0.02

L-Mean -1.33 -2.88 -2.96

NL-Mean 0.52 -0.12 0.23
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Table 7: Portfolios Sorted on World Order Flow

This table displays the performance of cryptocurrency portfolios sorted on world order flow (OFW ).
ortho-OFW is world order flow orthogonalized relative to same-period returns. P1 represents the portfo-
lio with the lowest lagged order flow and P5 the portfolio with the highest lagged order flow. The portfolios
are equally-weighted and rebalanced daily (Panel A) or weekly (Panel B). The alpha is based on a three-
factor model, which includes the cryptocurrency market, size and momentum factors (Liu, Tsyvinski and
Wu, 2022). The returns and alphas are in daily/weekly percent. SR is the annualized Sharpe ratio. The
Newey and West (1987) t-statistics are shown in parenthesis. The full sample period ranges from February
18, 2020 to June 30, 2022.

Panel A: Daily Portfolios Sorted on World Order Flow

P1 P2 P3 P4 P5 P5 − P1

Mean return (% daily) Mean alpha SR

OFW 0.46 0.30 0.38 0.50 0.44 -0.03 -0.06 -0.12

(t-stat) (1.84) (1.22) (1.61) (1.98) (1.73) (-0.19) (-0.43)

ortho-OFW 0.27 0.40 0.46 0.41 0.56 0.29 0.30 1.34

(t-stat) (1.09) (1.57) (1.84) (1.70) (2.19) (2.11) (2.07)

Panel B: Weekly Portfolios Sorted on World Order Flow

P1 P2 P3 P4 P5 P5 − P1

Mean return (% weekly) Mean alpha SR

OFW 1.08 1.82 1.86 1.65 2.69 1.61 1.44 1.68

(t-stat) (0.71) (1.12) (1.16) (1.03) (1.69) (2.13) (2.02)

ortho-OFW 1.14 1.33 2.06 1.67 2.88 1.74 1.52 1.79

(t-stat) (0.73) (0.85) (1.23) (1.10) (1.80) (2.28) (2.11)
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Table 8: Daily Portfolios Sorted on ML Forecasts

This table displays the performance of cryptocurrency portfolios that are sorted on ML forecasts. The
portfolios are equally-weighted and rebalanced daily. Results are reported for three ML models: OF only
conditions on order flows; EF only conditions on economic fundamentals; and OF+EF conditions on both.
All models condition on lagged returns. The alpha is based on a three-factor model, which includes the
cryptocurrency market, size and momentum factors (Liu, Tsyvinski and Wu, 2022). The returns and alphas
are in daily percent. SR is the annualized Sharpe ratio. The Newey and West (1987) t-statistics are shown in
parenthesis. Bold entries indicate the highest Sharpe ratio for each ML model across the three information
sets (OF, EF, OF+EF). The sample period ranges from February 18, 2020 to June 30, 2022.

OF Model EF Model OF+EF Model
P5 − P1 P5 − P1 P5 − P1

Mean alpha SR Mean alpha SR Mean alpha SR
OLS 0.45 0.44 2.26 0.62 0.63 2.54 0.55 0.57 2.27
(t-stat) (3.31) (3.42) (3.75) (4.20) (3.40) (3.75)

RR 0.44 0.42 2.22 0.61 0.63 2.51 0.49 0.50 2.09
(t-stat) (3.24) (3.33) (3.71) (4.16) (3.13) (3.42)

LAS 0.32 0.33 1.57 0.31 0.32 1.60 0.32 0.33 1.67
(t-stat) (2.30) (2.48) (2.53) (2.55) (2.61) (2.66)

EN 0.29 0.33 1.46 0.34 0.39 1.78 0.34 0.40 1.81
(t-stat) (2.14) (2.65) (2.67) (3.22) (2.69) (3.27)

PCR 0.17 0.17 0.84 -0.05 -0.11 -0.24 0.10 0.05 0.46
(t-stat) (1.24) (1.26) (-0.37) (-0.76) (0.74) (0.36)

RF 0.66 0.67 3.19 0.22 0.23 1.03 0.21 0.17 0.97
(t-stat) (5.00) (4.94) (1.62) (1.72) (1.49) (1.32)

SGB 0.78 0.79 3.63 0.56 0.65 2.54 0.44 0.51 2.15
(t-stat) (5.62) (5.67) (3.82) (4.66) (3.20) (3.92)

NN1 0.45 0.49 2.13 0.65 0.64 2.70 0.55 0.60 2.46
(t-stat) (3.21) (3.64) (4.14) (4.41) (3.67) (4.15)

NN2 0.55 0.59 2.77 0.42 0.42 1.72 0.67 0.67 2.76
(t-stat) (4.07) (4.61) (2.79) (2.71) (4.20) (4.40)

NN3 0.64 0.63 3.04 0.57 0.58 2.60 0.38 0.36 1.69
(t-stat) (4.47) (4.63) (3.85) (4.24) (2.48) (2.59)

NN4 0.42 0.43 2.16 0.28 0.33 1.19 0.46 0.46 2.06
(t-stat) (3.23) (3.41) (1.85) (2.19) (3.10) (3.31)

L-Mean 0.32 0.32 1.63 0.57 0.59 2.35 0.51 0.53 2.20
(t-stat) (2.37) (2.49) (3.46) (3.87) (3.26) (3.61)

NL-Mean 0.74 0.75 3.45 0.47 0.52 1.88 0.48 0.51 2.04
(t-stat) (5.21) (5.44) (2.82) (3.41) (2.99) (3.47)
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Table 9: The Performance of Long vs Long-Short Portfolios

This table compares the performance of the long to the long-short portfolio for daily returns. The portfolios
are sorted on the ML forecasts from the OF model that conditions on all lagged international order flows
and lagged returns. The long portfolio is the top quintile portfolio (P5) and the long-short portfolio is P5-P1.
The portfolios are equally-weighted and rebalanced daily. The alpha is based on a three-factor model, which
includes the cryptocurrency market, size and momentum factors (Liu, Tsyvinski and Wu, 2022). The returns
and alphas are in daily percent. SR is the annualized Sharpe ratio. MDD is the maximum drawdown. TO is
the daily turnover. BE-TC is the break-even transaction cost in daily percent. The Newey and West (1987)
t-statistics are shown in parenthesis. The sample period ranges from February 18, 2020 to June 30, 2022.

Long Portfolio (P5) - OF Model Long-Short Portfolio (P5 − P1) - OF Model

Mean alpha SR MDD TO BE TC Mean alpha SR MDD TO BE TC

OLS 0.56 0.56 1.41 0.75 0.80 0.68 0.45 0.44 2.26 0.34 1.59 0.28

(t-stat) (2.24) (2.18) (3.31) (3.42)

RR 0.55 0.55 1.41 0.77 0.81 0.67 0.44 0.42 2.22 0.35 1.59 0.27

(t-stat) (2.22) (2.16) (3.24) (3.33)

LAS 0.54 0.54 1.32 0.75 0.53 1.04 0.32 0.33 1.57 0.40 1.03 0.31

(t-stat) (2.11) (2.02) (2.30) (2.48)

EN 0.50 0.52 1.27 0.74 0.53 0.97 0.29 0.33 1.46 0.42 1.03 0.27

(t-stat) (2.04) (2.01) (2.14) (2.65)

PCR 0.47 0.48 1.21 0.75 0.80 0.58 0.17 0.17 0.84 0.48 1.59 0.11

(t-stat) (1.92) (1.87) (1.24) (1.26)

RF 0.71 0.73 1.71 0.68 0.77 0.92 0.66 0.67 3.19 0.23 1.55 0.43

(t-stat) (2.72) (2.70) (5.00) (4.94)

SGB 0.77 0.80 1.85 0.68 0.76 1.01 0.78 0.79 3.63 0.29 1.54 0.51

(t-stat) (2.94) (2.92) (5.62) (5.67)

NN1 0.61 0.64 1.54 0.64 0.81 0.76 0.50 0.53 2.34 0.35 1.59 0.32

(t-stat) (2.48) (2.46) (3.56) (3.82)

NN2 0.72 0.72 1.73 0.65 0.80 0.89 0.61 0.63 2.63 0.32 1.59 0.38

(t-stat) (2.74) (2.67) (3.89) (4.23)

NN3 0.68 0.69 1.69 0.63 0.80 0.84 0.70 0.71 3.37 0.28 1.59 0.44

(t-stat) (2.69) (2.64) (4.93) (5.31)

NN4 0.65 0.64 1.56 0.66 0.71 0.91 0.56 0.55 2.49 0.43 1.42 0.39

(t-stat) (2.48) (2.39) (3.77) (3.80)

L-Mean 0.48 0.49 1.21 0.78 0.80 0.58 0.32 0.32 1.63 0.36 1.59 0.20

(t-stat) (1.93) (1.89) (2.37) (2.49)

NL-Mean 0.79 0.81 1.88 0.66 0.77 1.02 0.75 0.76 3.52 0.28 1.55 0.48

(t-stat) (2.96) (2.99) (5.28) (5.57)
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Table 10: Double-Sorted Portfolios

This table displays the performance of double-sorted cryptocurrency portfolios. We first sort on the arbitrage
index, which is an index based on quintiles of size, idiosyncratic volatility and illiquidity. Then, we double sort
on one of the following: orthogonalized world order flow (ortho-OFW ), the linear ML forecast combination
(L-Mean) that conditions on all order flows (OF model), and the non-linear ML forecast combination (NL-
Mean) for the OF model. The portfolios are equally-weighted and rebalanced daily. The alpha is based on a
three-factor model, which includes the cryptocurrency market, size and momentum factors (Liu, Tsyvinski
and Wu, 2022). The mean returns and alphas are in daily percent. SR is the annualized Sharpe ratio. The
Newey and West (1987) t-statistics are shown in parenthesis. The table also reports the R2

oos in percent for
the two ML models for each level of the arbitrage index. The full sample period ranges from February 18,
2020 to June 30, 2022.

ortho-OFW

P1 P2 P3 P3 − P1

Mean return (% daily) Mean alpha SR

Arbitrage 1 0.32 0.53 0.66 0.34 0.33 1.96

Index (1.34) (2.14) (2.69) (3.10) (2.86)

2 0.28 0.74 0.59 0.31 0.29 1.21

(1.09) (2.76) (2.29) (1.90) (1.69)

3 0.49 0.55 0.60 0.11 0.13 0.36

(1.83) (2.09) (2.29) (0.55) (0.66)

L-Mean OF

P1 P2 P3 P3 − P1

Mean return (% daily) Mean alpha SR R2
oos

Arbitrage 1 0.55 0.50 0.43 -0.13 -0.12 -0.80 -0.80

Index (2.20) (2.11) (1.78) (-1.12) (-1.19)

2 0.41 0.72 0.49 0.09 0.13 0.37 -0.74

(1.49) (2.69) (1.98) (0.52) (0.84)

3 0.15 0.67 0.82 0.67 0.71 2.19 0.02

(0.55) (2.68) (2.90) (3.27) (3.46)

NL-Mean OF

P1 P2 P3 P3 − P1

Mean return (% daily) Mean alpha SR R2
oos

Arbitrage 1 0.33 0.50 0.68 0.35 0.36 2.15 0.83

Index (1.39) (2.07) (2.71) (3.28) (3.32)

2 0.32 0.66 0.64 0.33 0.38 1.25 0.45

(1.20) (2.61) (2.35) (2.01) (2.22)

3 0.12 0.50 1.02 0.90 0.86 2.65 0.62

(0.48) (2.06) (3.30) (3.94) (3.95)
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Figure 1: The Cumulative Return of Long-Short Portfolios

The figure plots the cumulative return for the long-short portfolio of select machine learning models that
condition on the international order flows (ML OF models). The figure also reports the return of the market
portfolio, which is the value-weighted return of all the coins in the sample. The sample period ranges from
February 18, 2020 to June 30, 2022.
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